PyTorch get started:修订间差异
小 Riguz移动页面PyTorch:Get Started至PyTorch get started,不留重定向 |
|
(没有差异)
|
2023年12月19日 (二) 11:25的最新版本
Installation
Conda Installation
conda create --name deeplearning python=3.11
conda activate deeplearning
python --version
// 3.11.5
Install pytorch
# conda install pytorch::pytorch torchvision torchaudio -c pytorch
# MPS acceleration is available on MacOS 12.3+
conda install pytorch-nightly::pytorch torchvision torchaudio -c pytorch-nightly
To verify:
import torch
x = torch.rand(5, 3)
print(x)
Output:
tensor([[0.2162, 0.2653, 0.6725],
[0.5371, 0.4180, 0.1353],
[0.3697, 0.5238, 0.0332],
[0.6179, 0.5008, 0.9435],
[0.1182, 0.3233, 0.9071]])
Concepts
- 标量(Scalar):仅包含一个数值的张量,例如 torch.tensor(3.0)
- 向量:一个轴的张量
- 矩阵:两个轴的张量
Tensor(张量)
Tensors are a specialized data structure that are very similar to arrays and matrices. In PyTorch, we use tensors to encode the inputs and outputs of a model, as well as the model’s parameters.
Tensors are similar to NumPy’s ndarrays, except that :
- tensors can run on GPUs or other hardware accelerators
- tensors are also optimized for automatic differentiation(自动微分)
>>> import torch
>>> x = torch.arange(10)
>>> x
tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x.shape
torch.Size([10])
>>> x.numel()
10
>>> X = x.reshape(3,4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: shape '[3, 4]' is invalid for input of size 10
>>> X = x.reshape(2,5) # or X = x.reshape(-1,5)
>>> X
tensor([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
>>> torch.zeros(2,3,4)
tensor([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
>>> torch.ones(2,3,4)
tensor([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]])
>>> torch.randn(3,4) #创建3x4的张量,其中每个值都从均值为0,标准差为1的正态分布中随机采样
tensor([[ 0.1182, -0.6975, 0.6529, 0.4547],
[-0.6887, 0.1396, 1.1660, 0.0818],
[-0.8471, 0.4265, 0.4753, 0.8336]])
张量运算
>>> x = torch.tensor([1.0, 2, 4, 8])
>>> y = torch.tensor([2, 2, 2, 2])
>>> x + y
tensor([ 3., 4., 6., 10.])
>>> x - y
tensor([-1., 0., 2., 6.])
>>> x * y
tensor([ 2., 4., 8., 16.])
>>> x / y
tensor([0.5000, 1.0000, 2.0000, 4.0000])
>>> x ** y
tensor([ 1., 4., 16., 64.])
>>> torch.exp(x)
tensor([2.7183e+00, 7.3891e+00, 5.4598e+01, 2.9810e+03])
>>> x.sum()
tensor(15.)