5.Longest Palindromic Substring:修订间差异
Created page with "=Description= {{LeetCode |id=longest-palindromic-substring |no=5 |difficulty=Medium |category=Dynamic Programming |collection=Top 150 |title=Longest Palindromic Substring |summary=Given a string s, return the longest palindromic substring in s.}} Example 1: <syntaxhighlight lang="java"> Input: s = "babad" Output: "bab" </syntaxhighlight> Explanation: "aba" is also a valid answer. Example 2: <syntaxhighlight lang="java"> Input: s = "cbbd" Output: "bb" </syntaxhighlig..." |
|||
第62行: | 第62行: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
优化后: | |||
{{Submission|runtime=197ms|memory=55.77MB|rp=19.59|mp=5.03}} | |||
<syntaxhighlight lang="java"> | |||
class Solution { | |||
public String longestPalindrome(String s) { | |||
/** | |||
s= babad | |||
1 0 1 0 0 bab | |||
# 1 0 1 0 aba | |||
# # 1 0 0 | |||
# # # 1 0 | |||
# # # # 1 | |||
*/ | |||
int [][] dp = new int[s.length()][s.length()]; | |||
for(int[] temp: dp) | |||
Arrays.fill(temp, -1); | |||
int max=1, start=0, end=0; | |||
for(int k = 1; k <= s.length(); k++){ | |||
for(int i = 0; i < s.length(); i++) { | |||
int j = i + k - 1; | |||
if(j >= s.length()) | |||
break; | |||
if(i == j) dp[i][j] = 1; | |||
else if(s.charAt(i) == s.charAt(j)){ | |||
dp[i][j] = i + 1 > j -1 || dp[i+1][j-1] == 1 ? 1: 0; | |||
if(dp[i][j] == 1 && k > max) { | |||
start = i; | |||
end = j; | |||
max = k; | |||
} | |||
} else dp[i][j] = 0; | |||
} | |||
} | |||
// for(int i = 0; i < s.length(); i++) { | |||
// for(int j = 0; j < s.length(); j++) { | |||
// System.out.print(dp[i][j] == -1? "#": dp[i][j]); | |||
// System.out.print(" "); | |||
// } | |||
// System.out.println(); | |||
// } | |||
return s.substring(start, end + 1); | |||
} | |||
} | |||
</syntaxhighlight> | |||
[[Category:Algorithm]] | [[Category:Algorithm]] | ||
[[Category:Dynamic Programming]] | [[Category:Dynamic Programming]] | ||
[[Category:LeetCode]] | [[Category:LeetCode]] |
2023年9月23日 (六) 14:10的版本
Description
#5 | Longest Palindromic Substring | Medium | ||
---|---|---|---|---|
Dynamic Programming | Top 150 | |||
Given a string s, return the longest palindromic substring in s. |
Example 1:
Input: s = "babad"
Output: "bab"
Explanation: "aba" is also a valid answer.
Example 2:
Input: s = "cbbd"
Output: "bb"
Solution
2D DP
Runtime 291ms |
|
Memory 55.82MB |
|
class Solution {
private int[][] dp;
private String s;
public String longestPalindrome(String s) {
this.s = s;
this.dp = new int[s.length()][s.length()];
for(int[] temp: dp)
Arrays.fill(temp, -1);
int max = 1, start = 0, end = 0;
for(int i = 0; i < s.length(); i++) {
for(int j = i+1; j < s.length(); j++) {
if(isPalindromic(i, j) && (j - i + 1 > max)) {
max = j - i + 1;
start = i;
end = j;
}
}
}
return s.substring(start, end+1);
}
private boolean isPalindromic(int start, int end) {
if(start >= end)
return true;
if(dp[start][end] != -1)
return dp[start][end] == 1;
boolean isPalindromic = (s.charAt(start) == s.charAt(end)) && isPalindromic(start+1, end -1);
dp[start][end] = isPalindromic ? 1: 0;
return isPalindromic;
}
}
优化后:
Runtime 197ms |
|
Memory 55.77MB |
|
class Solution {
public String longestPalindrome(String s) {
/**
s= babad
1 0 1 0 0 bab
# 1 0 1 0 aba
# # 1 0 0
# # # 1 0
# # # # 1
*/
int [][] dp = new int[s.length()][s.length()];
for(int[] temp: dp)
Arrays.fill(temp, -1);
int max=1, start=0, end=0;
for(int k = 1; k <= s.length(); k++){
for(int i = 0; i < s.length(); i++) {
int j = i + k - 1;
if(j >= s.length())
break;
if(i == j) dp[i][j] = 1;
else if(s.charAt(i) == s.charAt(j)){
dp[i][j] = i + 1 > j -1 || dp[i+1][j-1] == 1 ? 1: 0;
if(dp[i][j] == 1 && k > max) {
start = i;
end = j;
max = k;
}
} else dp[i][j] = 0;
}
}
// for(int i = 0; i < s.length(); i++) {
// for(int j = 0; j < s.length(); j++) {
// System.out.print(dp[i][j] == -1? "#": dp[i][j]);
// System.out.print(" ");
// }
// System.out.println();
// }
return s.substring(start, end + 1);
}
}