NanoGPT Tutorial:修订间差异
无编辑摘要 |
无编辑摘要 |
||
第38行: | 第38行: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
<syntaxhighlight lang="bash"> | |||
python train.py config/train_shakespeare_char.py --device=mps --compile=False --eval_iters=20 --log_interval=1 --block_size=64 --batch_size=12 --n_layer=4 --n_head=4 --n_embd=128 --max_iters=2000 --lr_decay_iters=2000 --dropout=0.0 | |||
step 2000: train loss 1.7640, val loss 1.8925 | |||
saving checkpoint to out-shakespeare-char | |||
iter 2000: loss 1.6982, time 352.67ms, mfu 0.05% | |||
</syntaxhighlight> | |||
[[Category:Deep Learning]] | [[Category:Deep Learning]] | ||
[[Category:PyTorch]] | [[Category:PyTorch]] |
2023年12月11日 (一) 05:12的版本
(base) ➜ nanoGPT git:(master) python data/shakespeare_char/prepare.py
length of dataset in characters: 1,115,394
all the unique characters:
!$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
vocab size: 65
train has 1,003,854 tokens
val has 111,540 tokens
python train.py config/train_shakespeare_char.py
# Run it without GPU (mac air), pytorch nightly
# raise AssertionError("Torch not compiled with CUDA enabled")
python train.py config/train_shakespeare_char.py --device=cpu --compile=False --eval_iters=20 --log_interval=1 --block_size=64 --batch_size=12 --n_layer=4 --n_head=4 --n_embd=128 --max_iters=2000 --lr_decay_iters=2000 --dropout=0.0
step 2000: train loss 1.7640, val loss 1.8925
saving checkpoint to out-shakespeare-char
iter 2000: loss 1.6982, time 306.45ms, mfu 0.05%
python sample.py --out_dir=out-shakespeare-char --device=cpu
Overriding: out_dir = out-shakespeare-char
Overriding: device = cpu
number of parameters: 0.80M
Loading meta from data/shakespeare_char/meta.pkl...
I by doth what letterd fain flowarrman,
Lotheefuly daught shouss blate thou his though'd that opt--
Hammine than you, not neme your down way.
ELANUS:
I would and murser wormen that more?
...
python train.py config/train_shakespeare_char.py --device=mps --compile=False --eval_iters=20 --log_interval=1 --block_size=64 --batch_size=12 --n_layer=4 --n_head=4 --n_embd=128 --max_iters=2000 --lr_decay_iters=2000 --dropout=0.0
step 2000: train loss 1.7640, val loss 1.8925
saving checkpoint to out-shakespeare-char
iter 2000: loss 1.6982, time 352.67ms, mfu 0.05%