NanoGPT Tutorial:修订间差异
第2行: | 第2行: | ||
本文所有操作均在MacBook Air(2020,M1芯片)上测试验证。 | 本文所有操作均在MacBook Air(2020,M1芯片)上测试验证。 | ||
== | == 安装Miniconda 和Python== | ||
在MacOS下,可以通过以下脚本安装<ref>https://docs.conda.io/projects/miniconda/en/latest/</ref>: | 在MacOS下,可以通过以下脚本安装<ref>https://docs.conda.io/projects/miniconda/en/latest/</ref>: |
2023年12月11日 (一) 11:55的版本
环境准备
本文所有操作均在MacBook Air(2020,M1芯片)上测试验证。
安装Miniconda 和Python
在MacOS下,可以通过以下脚本安装[1]:
$ mkdir -p ~/miniconda3
$ curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh -o ~/miniconda3/miniconda.sh
$ bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
$ rm -rf ~/miniconda3/miniconda.sh
安装完成后,可以使用conda命令来管理机器学习的Python环境了。默认系统会自动创建一个Python3.11的环境:
$ python --version
Python 3.11.5
$ whereis python
python: /Users/riguz/miniconda3/bin/python
下载
(base) ➜ nanoGPT git:(master) python data/shakespeare_char/prepare.py
length of dataset in characters: 1,115,394
all the unique characters:
!$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
vocab size: 65
train has 1,003,854 tokens
val has 111,540 tokens
python train.py config/train_shakespeare_char.py
# Run it without GPU (mac air), pytorch nightly
# raise AssertionError("Torch not compiled with CUDA enabled")
python train.py config/train_shakespeare_char.py --device=cpu --compile=False --eval_iters=20 --log_interval=1 --block_size=64 --batch_size=12 --n_layer=4 --n_head=4 --n_embd=128 --max_iters=2000 --lr_decay_iters=2000 --dropout=0.0
step 2000: train loss 1.7640, val loss 1.8925
saving checkpoint to out-shakespeare-char
iter 2000: loss 1.6982, time 306.45ms, mfu 0.05%
# total cost: 48s
python sample.py --out_dir=out-shakespeare-char --device=cpu
Overriding: out_dir = out-shakespeare-char
Overriding: device = cpu
number of parameters: 0.80M
Loading meta from data/shakespeare_char/meta.pkl...
I by doth what letterd fain flowarrman,
Lotheefuly daught shouss blate thou his though'd that opt--
Hammine than you, not neme your down way.
ELANUS:
I would and murser wormen that more?
...
python train.py config/train_shakespeare_char.py --device=mps --compile=False --eval_iters=20 --log_interval=1 --block_size=64 --batch_size=12 --n_layer=4 --n_head=4 --n_embd=128 --max_iters=2000 --lr_decay_iters=2000 --dropout=0.0
...
iter 1998: loss 1.8794, time 22.56ms, mfu 0.06%
iter 1999: loss 1.9167, time 22.62ms, mfu 0.06%
step 2000: train loss 1.7640, val loss 1.8925
saving checkpoint to out-shakespeare-char
iter 2000: loss 1.6982, time 352.67ms, mfu 0.05%
# total cost: 51s