NanoGPT Tutorial:修订间差异

来自WHY42
Riguz留言 | 贡献
Riguz留言 | 贡献
第2行: 第2行:
本文所有操作均在MacBook Air(2020,M1芯片)上测试验证。
本文所有操作均在MacBook Air(2020,M1芯片)上测试验证。


== Miniconda 和Python==
== 安装Miniconda 和Python==


在MacOS下,可以通过以下脚本安装<ref>https://docs.conda.io/projects/miniconda/en/latest/</ref>:
在MacOS下,可以通过以下脚本安装<ref>https://docs.conda.io/projects/miniconda/en/latest/</ref>:

2023年12月11日 (一) 11:55的版本

环境准备

本文所有操作均在MacBook Air(2020,M1芯片)上测试验证。

安装Miniconda 和Python

在MacOS下,可以通过以下脚本安装[1]

$ mkdir -p ~/miniconda3
$ curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh -o ~/miniconda3/miniconda.sh
$ bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
$ rm -rf ~/miniconda3/miniconda.sh

安装完成后,可以使用conda命令来管理机器学习的Python环境了。默认系统会自动创建一个Python3.11的环境:

$ python --version
Python 3.11.5
$ whereis python
python: /Users/riguz/miniconda3/bin/python

下载

(base)   nanoGPT git:(master) python data/shakespeare_char/prepare.py
length of dataset in characters: 1,115,394
all the unique characters:
 !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
vocab size: 65
train has 1,003,854 tokens
val has 111,540 tokens
python train.py config/train_shakespeare_char.py

# Run it without GPU (mac air), pytorch nightly
# raise AssertionError("Torch not compiled with CUDA enabled")
python train.py config/train_shakespeare_char.py --device=cpu --compile=False --eval_iters=20 --log_interval=1 --block_size=64 --batch_size=12 --n_layer=4 --n_head=4 --n_embd=128 --max_iters=2000 --lr_decay_iters=2000 --dropout=0.0

step 2000: train loss 1.7640, val loss 1.8925
saving checkpoint to out-shakespeare-char
iter 2000: loss 1.6982, time 306.45ms, mfu 0.05%

# total cost: 48s

python sample.py --out_dir=out-shakespeare-char --device=cpu
Overriding: out_dir = out-shakespeare-char
Overriding: device = cpu
number of parameters: 0.80M
Loading meta from data/shakespeare_char/meta.pkl...

I by doth what letterd fain flowarrman,
Lotheefuly daught shouss blate thou his though'd that opt--
Hammine than you, not neme your down way.

ELANUS:
I would and murser wormen that more?
...


python train.py config/train_shakespeare_char.py --device=mps --compile=False --eval_iters=20 --log_interval=1 --block_size=64 --batch_size=12 --n_layer=4 --n_head=4 --n_embd=128 --max_iters=2000 --lr_decay_iters=2000 --dropout=0.0

...
iter 1998: loss 1.8794, time 22.56ms, mfu 0.06%
iter 1999: loss 1.9167, time 22.62ms, mfu 0.06%
step 2000: train loss 1.7640, val loss 1.8925
saving checkpoint to out-shakespeare-char
iter 2000: loss 1.6982, time 352.67ms, mfu 0.05%
# total cost: 51s