Workflow design:修订间差异

来自WHY42
Riguz留言 | 贡献
Riguz留言 | 贡献
第96行: 第96行:
== 概念模型 ==
== 概念模型 ==


[[Image:Workflow-concept-model.png|600px]]


== 定义工作流Schema ==
== 定义工作流Schema ==

2024年7月26日 (五) 08:40的版本

随着2023年大模型在国内的发展成熟,现在大家逐步开始真正关注到大模型应用的开发上。有人说,2024年是大模型应用的落地元年。的确,看似无所不能的大模型,也并不是直接丢到一个系统就能用的,如何开发大模型应用,实际上还处于一个刚起步的阶段。一些成熟的技术,经历过许多人摸索后,总能给出一个"best practice";对于大模型应用开发来说,却仍还在探索阶段。 目前,一个看起来比较靠谱的模型,是这样定义大模型应用开发的几个level的:

最简单的Wrapper层级,实际就是把大模型的提示词封装成一个固定功能的”方法“,然后集成到业务系统中。KPP的Function(或者Prompt),就是一个Wrapper。Wrapper能做什么完全取决于大模型的能力,比如生成一段文字,甚至写一段代码,都没有问题。但是如果想做一个复杂的功能,恐怕就不行了,比如,先生成代码再执行得到代码运行结果,这样就没法直接通过大模型请求来做了,原因是大模型本身无法直接执行代码 [1]

显然,对于复杂的功能,我们可以尝试分步骤来解决。比如一键生成PPT就是很好的例子,第一步先生成一个outline;然后再根据outline,去填充内容;最后通过一个生成文档的API生成一个美化后的PPT。这样每一步都可以用最适合的技术来进行,比如生成outline和填充内容用LLM,可以选择最合适的模型;美化PPT则可以直接使用已有的API来处理。

这其实就是Flow了,或者更明确一点,Agentic Workflow[2]。不是普通的工作流,是“智能”的工作流。通过流程的编排,我们可以扩充LLM的能力,通过一些组合来实现复杂的业务功能。相对于Wrapper而言,Workflow可以更好地实现复杂的AI能力。 因此,我们在KPP中也实现了Workflow的能力。这里就技术层面分享一下KPP在构建Workflow时的一些设计和实现。

为什么要自研,搞个开源的不行么?

实际上,在开始设计工作流之前,就已经有不少公司已经在做了。其中最具有参考价值的主要是Dify和扣子。其中,Dify是一个开源的系统,理论上可以直接拿过来用。 但是,考虑到WPS AI的实际情况,有几个比较重要的问题是Dify难以支撑的:

  • 无法直接嵌入到WPS AI的现有体系,包括网关、KPP、AI Server等,一定会存在一个二次开发的成本
  • Dify是用Python写的,如果大规模使用,很可能会遇到性能问题,包括工作流本身的异步多线程执行、以及水平扩展的性价比

实际上,字节的Coze是一个非常适合我们的开发平台。它的产品设计相当专业和完善,Workflow、图像流、Agent、多Agent协作等,是目前所有平台中定义最清晰的。相对而言,一些平台自己都不知道自己在做什么,比如百度的Agent Builder和App Builder,做着做着就成一样的了[3]。 Dify在这方面也有明显的问题,看起来还没有搞清楚Agent和Workflow的关系。

然而很遗憾目前为止没有一个开源的系统可以达到Coze的高度。 正是由于种种原因,最终KPP决定完全自研Workflow系统。

理论基础

即便从零开始实现一个Workflow其实也比较简单,因为从原理上来说,Workflow无非就是一个DAG(有向无环图)而已。 它是工作流的核心。DAG相信大家都比较熟悉,之所以要用到DAG正式因为它有两个重要的特点:

  • 节点之间的连接是有向的,否则我们将无法判断节点之间的依赖关系和执行顺序
  • 整个图是无环的,这也限制了在Workflow中是不可以存在循环的。这点非常重要,如果是一个Agent,那么我们可以一直给Agent发消息聊下去,这是一个循环;但是Workflow一定不能存在这种不确定的循环,或者说,我们期望在Workflow能够在确定有限的时间内运行完成并获取结果,它是Stateless(无状态)的

使用拓扑排序确定执行顺序

执行DAG第一件事情就是确定节点的执行顺序,从哪里开始,又如何结束?

考虑如下的几种场景:

从图中我们可以看出这也一些信息:

  • 严格而言,理论上DAG只要求有向无环,但是不必要“连通”的。也即是说,图中可以存在孤立的点,或者多个分散的DAG构成一个大的DAG
  • 一个节点可能有多个后继节点,意味着某个任务完成后,可能触发多个任务的执行
  • 一个节点也可能有多个依赖,那么只有依赖节点全部执行完成后,才能开始它的执行

我们可以通过拓扑排序(Topological sorting)来确定节点的执行顺序。比较著名的算法是Kahn's algorithm,原理也很简单,从图中选出入度为零的节点,然后删掉这些节点和边,再重复这一过程直到原图为空。这样选出的这些节点就是拓扑排序的结果。

拓扑排序还有一个附带的好处,就是可以检测图中是否有环。如果图中没有入度为零的节点,但是选出的节点数目仍然小于图的节点数,那么拓扑排序失败,证明图中有环存在。

拓扑排序的结果并不一定是唯一的。比如场景一中,由于节点相互之间完全无依赖,因此任意一个组合都是正确的拓扑排序结果。

值得注意的是,尽管拓扑排序得到的是一个有序的列表,这并不意味着你需要“串行”执行。场景三的拓扑排序结果为[A,B,C,D]或者[A,B,D,C],其中,C和D是可以并行执行的。

事件驱动架构

确定了节点的执行顺序之后,我们可以按照顺序来执行节点,看起来工作流的执行就这样完成了:

sorted_nodes <- dag.topological_sort()
for node in sorted_nodes:
    node.wait_for_dependencies()
    node.execute()

但是我们忽略了几个重要的问题:

  • 节点之间是有交互的。考虑场景三中,节点B是可能需要使用A的运行结果的,也就是说,一个节点的运行结果应该对其后继节点可见
  • 我们需要能够实时观测工作流的运行情况,比如当前执行到哪一个节点了?这对于界面调试、API调用等都十分有用。

使用事件驱动架构可以比较容易来解决这个问题。我们将工作流的运行抽象成一系列的事件,节点的执行产生事件(比如节点开始、节点结束),而这些事件具体如何使用则由消费者来决定。 这样,在UI上调试工作流时,我们只需要根据这些事件来更新页面上的节点状态;当使用API调用时,我们则可以过滤掉不感兴趣的事件,只监听结果事件并返回给调用方即可。 这样对于工作流执行引擎将有非常强的扩展性和可测试性。

传递闭包简化

对于使用DAG的系统,一个不可忽视的问题就是DAG的不确定性:用户很可能构建出奇奇怪怪的巨复杂的图出来,其中可能会有不必要的边。 这对于理解和执行工作流都可能造成麻烦。例如,下图中左边a→d, a→e 都是不必要的边。通过传递闭包简化(Transitive reduction)算法可以对无用的连接进行删除,从而得到一个唯一确定的简化工作流。

使用Go语言实现工作流

在有以上的一些理论基础后,实现思路已经非常清晰,尽管仍然有许多技术细节需要确定,就看如何具体设计和实现了。我们使用Go语言来实现,初步支持下面几种节点:

  • 开始、结束
  • 条件判断
  • 大模型调用
  • 插件:包括bing搜索、高召回、分流

概念模型

定义工作流Schema

在实现之前,首先需要解决的一个问题是,我们如何来表示一个工作流?比如条件判断的条件怎么存储?大模型调用的提示词怎么表示?

这是一个非常重要的问题,因为它是一切的基础,我们需要通过一个标准的协议来统一前端、后端等对于工作流的表示。不难发现,工作流的定义包括:

  • DAG的表示,即节点和边
  • 节点的自身属性,根据节点类型不同,其可用的属性也不尽相同

我们使用JSON Schema定义了一个工作流格式,大概长这样:

{
  "type": "object",
  "properties": {
    "name": {
      "type": "string"
    },
    "nodes": {
      "type": "array",
      "items": {
        "$ref": "#/definitions/node"
      }
    },
    "edges": {
      "type": "array",
      "items": {
        "$ref": "#/definitions/link"
      }
    },
    ...
  }
}

对于不同的节点,我们可以分别定义节点具体有哪些属性,格式是什么,是否必须等,例如:

{
  ...
  "bingSearchPluginProperties": {
    "properties": {
      "pluginType": {
        "type": "string"
      },
      "version": {
        "type": "string"
      },
      "query": {
        "$ref": "#/definitions/variableBinding"
      },
      "count": {
        "type": "number"
      }
    },
    "required": [
      "pluginType",
      "version",
      "query"
    ]
  }
}

完整的定义比较复杂,但通过这样一个Schema,我们可以解决很多问题:

  • 这个工作流是否合法?至少格式上是否正确
  • 前端开发时,如何清楚工作流支持多少个节点?每个节点属性是什么?

对于这种复杂的工作流来说,传统的API文档是无法精确到这样的程度的,不仅如此,它的最大好处是,它是真的可以运行的!

对工作流的抽象

使用Go routine 实现异步工作流运行模型

前面我们有提到,尽管拓扑排序

Pub/Sub 模式

未来展望

关于为什么要做Workflow,感兴趣可以从这里了解一些其他的信息[4]

  1. 虽然模型本身可以推理,一些情况下是可以推算出结果,但无法做到准确。即使是人,也很难直接计算诸如10988x727664=?这样的问题
  2. https://www.deeplearning.ai/the-batch/issue-242/
  3. https://www.53ai.com/news/qianyanjishu/1317.html
  4. AI Con总结和KPP工作流 方案汇报 https://365.kdocs.cn/l/crXXklzrerKF