Quick sort:修订间差异
imported>Soleverlee |
imported>Soleverlee |
||
第169行: | 第169行: | ||
</source> | </source> | ||
==C== | ==C#== | ||
<source lang=" | <source lang="csharp"> | ||
public static void Sort(int[] numbers) | |||
{ | |||
Sort(numbers, 0, numbers.Length - 1); | |||
} | |||
private static void Sort(int[] numbers, int left, int right) | |||
{ | |||
if (left < right) | |||
{ | |||
int middle = numbers[(left + right) / 2]; | |||
int i = left - 1; | |||
int j = right + 1; | |||
while (true) | |||
{ | |||
while (numbers[++i] < middle) ; | |||
while (numbers[--j] > middle) ; | |||
if (i >= j) | |||
break; | |||
Swap(numbers, i, j); | |||
} | |||
Sort(numbers, left, i - 1); | |||
Sort(numbers, j + 1, right); | |||
} | |||
} | |||
private static void Swap(int[] numbers, int i, int j) | |||
{ | |||
int number = numbers[i]; | |||
numbers[i] = numbers[j]; | |||
numbers[j] = number; | |||
} | |||
</source> | |||
==Python== | |||
<source lang="python"> | |||
def qsort(arr): | |||
if len(arr) <= 1: | |||
return arr | |||
else: | |||
pivot = arr[0] | |||
return qsort([x for x in arr[1:] if x < pivot]) + \ | |||
[pivot] + \ | |||
qsort([x for x in arr[1:] if x >= pivot]) | |||
</source> | </source> | ||
[[Category:Algorithm]] | [[Category:Algorithm]] |
2015年3月27日 (五) 09:50的版本
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n)算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
算法描述
快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。
步骤为:
- 从数列中挑出一个元素,称为"基准"(pivot),
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个#分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
示例代码
C++(迭代版本)
//参考:http://www.dutor.net/index.php/2011/04/recursive-iterative-quick-sort/
struct Range{
explicit Range(int s=0,int e=0):start(s),end(e){}
int start,end;
};
void quicksort(int n,int arr[]){
if(n<=0) return;
stack<Range> st;
st.push(Range(0,n-1));
while(!st.empty()){
Range range = st.top();
st.pop();
int pivot = arr[range.end];
int pos = range.start-1;
for(int i=range.start;i<range.end;++i){
if(arr[i]<pivot){
std::swap(arr[i],arr[++pos]);
}
}
std::swap(arr[++pos],arr[range.end]);
if(pos-1>range.start){
st.push(Range(range.start,pos-1));
}
if(pos+1<range.end){
st.push(Range(pos+1,range.end));
}
}
}
C
#include <stdio.h>
#include <stddef.h>
void swap(int * a, int * b) {
int tmp = * a;
* a = * b;
* b = tmp;
}
size_t partition(int * ary, size_t len, size_t pivot_i) {
size_t i = 0;
size_t small_len = pivot_i;
int pivot = ary[pivot_i];
swap(&ary[pivot_i], &ary[pivot_i + (len - 1)]);
for (; i < len; i++) {
if (ary[pivot_i + i] < pivot) {
swap(&ary[pivot_i + i], &ary[small_len]);
small_len++;
}
}
swap(&ary[pivot_i + (len - 1)], &ary[small_len]);
return small_len;
}
void quick_sort(int * ary, size_t len) {
if (len == 0 || len == 1) return;
size_t small_len = partition(ary, len, 0);
quick_sort(ary, small_len);
quick_sort(&ary[small_len + 1], len - small_len - 1);
}
int main(void) {
int ary[] = {2,4,2,5,3,5,3,1,7,6};
size_t len = sizeof(ary) / sizeof(ary[0]);
quick_sort(ary, len);
return 0;
}
C89标准在stdlib.h中定义了抽象数据类型的快速排序函数qsort(3)。
#include <stdio.h>
#include <stdlib.h>
static int cmp(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
}
int main()
{
int arr[10]={5, 3, 7, 4, 1, 9, 8, 6, 2,10};
qsort(arr, 10, sizeof(int), cmp);
return 0;
}
#include <functional>
#include <algorithm>
#include <iterator>
template< typename BidirectionalIterator, typename Compare >
void quick_sort( BidirectionalIterator first, BidirectionalIterator last, Compare cmp ) {
if( first != last ) {
BidirectionalIterator left = first;
BidirectionalIterator right = last;
BidirectionalIterator pivot = left++;
while( left != right ) {
if( cmp( *left, *pivot ) ) {
++left;
} else {
while( (left != right) && cmp( *pivot, *right ) )
right--;
std::iter_swap( left, right );
}
}
if (cmp( *pivot, *left ))
--left;
std::iter_swap( first, left );
quick_sort( first, left, cmp );
quick_sort( right, last, cmp );
}
}
template< typename BidirectionalIterator >
inline void quick_sort( BidirectionalIterator first, BidirectionalIterator last ) {
quick_sort( first, last,
std::less_equal< typename std::iterator_traits< BidirectionalIterator >::value_type >()
);
}
未使用STL的快速排序版本:
#include <utility>
using std::swap;
int partition(int* array, int left, int right)
{
int index = left;
int pivot = array[index];
swap(array[index], array[right]);
for (int i=left; i<right; i++)
{
if (array[i] > pivot) // 降序
swap(array[index++], array[i]);
}
swap(array[right], array[index]);
return index;
}
void qsort(int* array, int left, int right)
{
if (left >= right)
return;
int index = partition(array, left, right);
qsort(array, left, index - 1);
qsort(array, index + 1, right);
}
C#
public static void Sort(int[] numbers)
{
Sort(numbers, 0, numbers.Length - 1);
}
private static void Sort(int[] numbers, int left, int right)
{
if (left < right)
{
int middle = numbers[(left + right) / 2];
int i = left - 1;
int j = right + 1;
while (true)
{
while (numbers[++i] < middle) ;
while (numbers[--j] > middle) ;
if (i >= j)
break;
Swap(numbers, i, j);
}
Sort(numbers, left, i - 1);
Sort(numbers, j + 1, right);
}
}
private static void Swap(int[] numbers, int i, int j)
{
int number = numbers[i];
numbers[i] = numbers[j];
numbers[j] = number;
}
Python
def qsort(arr):
if len(arr) <= 1:
return arr
else:
pivot = arr[0]
return qsort([x for x in arr[1:] if x < pivot]) + \
[pivot] + \
qsort([x for x in arr[1:] if x >= pivot])