55.Jump Game:修订间差异
第51行: | 第51行: | ||
return true; | return true; | ||
} | |||
} | |||
</syntaxhighlight> | |||
==1D DP 2== | |||
{{Submission|runtime=433ms|memory=44.03MB|rp=6.85|mp=70.05}} | |||
<syntaxhighlight lang="java"> | |||
class Solution { | |||
public boolean canJump(int[] nums) { | |||
boolean []dp = new boolean[nums.length]; | |||
dp[0] = true; | |||
for(int i = 0; i <nums.length; i++) { | |||
if(!dp[i]) return false; | |||
for(int j = 1; j <= nums[i]; j++) { | |||
int next = i + j; | |||
if(next >= dp.length) break; | |||
dp[next] = true; | |||
} | |||
} | |||
return dp[nums.length-1]; | |||
} | } | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> |
2023年10月10日 (二) 23:24的版本
Description
#55 | Triangle | Medium | ||
---|---|---|---|---|
Dynamic Programming | Top 150 | |||
You are given an integer array nums. You are initially positioned at the array's first index, and each element in the array represents your maximum jump length at that position. Return true if you can reach the last index, or false otherwise. |
Example 1:
Input: nums = [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index. Example 2:
Input: nums = [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum jump length is 0, which makes it impossible to reach the last index.
Solution
1D DP
Runtime 418ms |
|
Memory 43.4MB |
|
class Solution {
public boolean canJump(int[] nums) {
/*
[2,3,1,1,4]
1 1 2 2 2
*/
int []dp = new int[nums.length];
dp[0] = 1;
for(int i = 0; i < nums.length; i++) {
for(int j = 1; j <= nums[i]; j++){
if(i+j >= dp.length) break;
dp[i+j]++;
}
}
for(int i = 0; i < dp.length; i++) {
if(dp[i] == 0) return false;
}
return true;
}
}
1D DP 2
Runtime 433ms |
|
Memory 44.03MB |
|
class Solution {
public boolean canJump(int[] nums) {
boolean []dp = new boolean[nums.length];
dp[0] = true;
for(int i = 0; i <nums.length; i++) {
if(!dp[i]) return false;
for(int j = 1; j <= nums[i]; j++) {
int next = i + j;
if(next >= dp.length) break;
dp[next] = true;
}
}
return dp[nums.length-1];
}
}