Heap sort
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
堆排序的平均时间复杂度为Ο(nlogn) 。
算法描述
- 创建一个堆H[0..n-1]
- 把堆首(最大值)和堆尾互换
- 把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置
- 重复步骤2,直到堆的尺寸为1
示例代码
C
#define MAX_HEAP_LEN 100
static int heap[MAX_HEAP_LEN];
static int heap_size = 0; // the number of elements in heaps
static void swap(int* a, int* b)
{
int temp = *b;
*b = *a;
*a = temp;
}
static void shift_up(int i)
{
int done = 0;
if( i == 0) return; //node is the root already
while((i!=0)&&(!done))
{
if(heap[i] > heap[(i-1)/2])
{//if the current is larger than the parent, then swap
swap(&heap[i],&heap[(i-1)/2]);
}
else
{// the job is already done.
done =1;
}
i = (i-1)/2;
}
}
static void shift_down(int i)
{
int done = 0;
if (2*i + 1> heap_size) return; // node i is a leaf
while((2*i+1 < heap_size)&&(!done))
{
i =2*i+1; // jump to left child
if ((i+1< heap_size) && (heap[i+1] > heap[i]))
{// find the bigger one of the two children
i++;
}
if (heap[(i-1)/2] < heap[i])
{
swap(&heap[(i-1)/2], &heap[i]);
}
else
{
done = 1;
}
}
}
static void delete(int i)
{
int last = heap[heap_size - 1]; // get the last one;
heap_size--; // shrink the heap
if (i == heap_size) return;
heap[i] = last; // use the last item to overwrite the current
shift_down(i);
}
int delete_max()
{
int ret = heap[0];
delete(0);
return ret;
}
void insert(int new_data)
{
if(heap_size >= MAX_HEAP_LEN) return;
heap_size++;
heap[heap_size - 1] = new_data;
shift_up(heap_size - 1);
}